The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120.
نویسندگان
چکیده
In Anabaena 7120, heterocysts (cells specialized for nitrogen fixation) develop at the ends of filaments and at intervals within each filament. We have isolated a mutant Anabaena strain that develops heterocysts mostly at the ends of filaments. This mutant, PAT-1, grows poorly under nitrogen-fixing conditions. The wild-type gene that complements the mutation in PAT-1, called patA, was cloned and sequenced. The predicted PatA protein contains 379 amino acids distributed among three "domains" based on predictions of hydropathy and flexibility. The carboxyl-terminal domain is very similar to that of CheY and other response regulators in two-component regulatory systems in eubacteria. The patA mutation suppresses the multiheterocyst phenotype produced by extra copies of the wild-type hetR gene described previously, suggesting that PatA and HetR are components of the same environment-sensing regulatory circuit in Anabaena.
منابع مشابه
Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions.
Heterocyst differentiation in the filamentous cyanobacterium Anabaena PCC 7120 requires a functional hetR gene. Increased expression of the hetR gene is seen in developing and mature heterocysts in response to fixed nitrogen limitation. We mapped four likely transcriptional start sites for hetR and identified a specific transcript that is positively autoregulated. By using the copper-responsive...
متن کاملTemporal and spatial regulation of the four transcription start sites of hetR from Anabaena sp. strain PCC 7120.
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms nitrogen-fixing heterocysts in a periodic pattern in response to combined-nitrogen limitation in the environment. The master regulator of heterocyst differentiation, HetR, is necessary for both pattern formation and commitment of approximately every 10th cell of a filament to differentiation into a heterocyst. In this study, the ...
متن کاملCyanobacterial response regulator PatA contains a conserved N-terminal domain (PATAN) with an alpha-helical insertion
The cyanobacterium Anabaena (Nostoc) PCC 7120 responds to starvation for nitrogen compounds by differentiating approximately every 10th cell in the filament into nitrogen-fixing cells called heterocysts. Heterocyst formation is subject to complex regulation, which involves an unusual response regulator PatA that contains a CheY-like phosphoacceptor (receiver, REC) domain at its C-terminus. PatA...
متن کاملRegulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120.
Unlike those of the wild-type strain, proheterocysts of the Anabaena sp. strain PCC 7120 hetC strain keep dividing. ftsZ, the most critical cell division gene, is up-regulated in hetC proheterocysts. Heterocyst differentiation genes hglD, hglE, patB, nifB, and xisA are no longer expressed in the hetC mutant. hetC also regulates the expression of patA, a pattern formation gene.
متن کاملAnabaena sp. strain PCC 7120 hetY gene influences heterocyst development.
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 responds to starvation for fixed nitrogen by producing a semiregular pattern of nitrogen-fixing cells called heterocysts. Overexpression of the hetY gene partially suppressed heterocyst formation, resulting in an abnormal heterocyst pattern. Inactivation of hetY increased the time required for heterocyst maturation and caused ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 89 12 شماره
صفحات -
تاریخ انتشار 1992